Monday, 9 October 2017

Moving Average Box Filter


Einführung in ARIMA: Nichtseasonal-Modelle ARIMA (p, d, q) Prognosegleichung: ARIMA-Modelle sind in der Theorie die allgemeinste Klasse von Modellen für die Prognose einer Zeitreihe, die gemacht werden kann, um 8220stationary8221 durch differencing (wenn nötig), vielleicht In Verbindung mit nichtlinearen Transformationen wie Logging oder Deflating (falls erforderlich). Eine zufällige Variable, die eine Zeitreihe ist, ist stationär, wenn ihre statistischen Eigenschaften alle über die Zeit konstant sind. Eine stationäre Serie hat keinen Trend, ihre Variationen um ihre Mittel haben eine konstante Amplitude, und es wackelt in einer konsistenten Weise. D. h. seine kurzzeitigen zufälligen Zeitmuster sehen immer in einem statistischen Sinn gleich aus. Die letztere Bedingung bedeutet, daß ihre Autokorrelationen (Korrelationen mit ihren eigenen vorherigen Abweichungen vom Mittelwert) über die Zeit konstant bleiben oder äquivalent, daß sein Leistungsspektrum über die Zeit konstant bleibt. Eine zufällige Variable dieses Formulars kann (wie üblich) als eine Kombination von Signal und Rauschen betrachtet werden, und das Signal (wenn man offensichtlich ist) könnte ein Muster der schnellen oder langsamen mittleren Reversion oder sinusförmigen Oszillation oder eines schnellen Wechsels im Zeichen sein , Und es könnte auch eine saisonale Komponente haben. Ein ARIMA-Modell kann als 8220filter8221 betrachtet werden, das versucht, das Signal vom Rauschen zu trennen, und das Signal wird dann in die Zukunft extrapoliert, um Prognosen zu erhalten. Die ARIMA-Prognosegleichung für eine stationäre Zeitreihe ist eine lineare (d. h. regressionstypische) Gleichung, bei der die Prädiktoren aus Verzögerungen der abhängigen Variablen und Verzögerungen der Prognosefehler bestehen. Das heißt: vorhergesagter Wert von Y eine Konstante undeiner gewichteten Summe von einem oder mehreren neueren Werten von Y und einer gewichteten Summe von einem oder mehreren neueren Werten der Fehler. Wenn die Prädiktoren nur aus verzögerten Werten von Y bestehen, ist es ein reines autoregressives Modell (8220 selbst-regressed8221), das nur ein Spezialfall eines Regressionsmodells ist und mit Standardregressionssoftware ausgestattet werden kann. Zum Beispiel ist ein autoregressives (8220AR (1) 8221) Modell erster Ordnung für Y ein einfaches Regressionsmodell, bei dem die unabhängige Variable nur Y um eine Periode (LAG (Y, 1) in Statgraphics oder YLAG1 in RegressIt hinterlässt). Wenn einige der Prädiktoren die Fehler der Fehler sind, ist es ein ARIMA-Modell, es ist kein lineares Regressionsmodell, denn es gibt keine Möglichkeit, 828last period8217s error8221 als unabhängige Variable anzugeben: Die Fehler müssen auf einer Periodenperiode berechnet werden Wenn das Modell an die Daten angepasst ist. Aus technischer Sicht ist das Problem bei der Verwendung von verzögerten Fehlern als Prädiktoren, dass die Vorhersagen des Modells8217 nicht lineare Funktionen der Koeffizienten sind. Obwohl sie lineare Funktionen der vergangenen Daten sind. So müssen Koeffizienten in ARIMA-Modellen, die verzögerte Fehler enthalten, durch nichtlineare Optimierungsmethoden (8220hill-climbing8221) geschätzt werden, anstatt nur ein Gleichungssystem zu lösen. Das Akronym ARIMA steht für Auto-Regressive Integrated Moving Average. Die Verzögerungen der stationärisierten Serien in der Prognosegleichung werden als quartalspezifische Begriffe bezeichnet, die Verzögerungen der Prognosefehler werden als quadratische Begrenzungsterme bezeichnet, und eine Zeitreihe, die differenziert werden muss, um stationär zu sein, wird als eine quotintegrierte Quotversion einer stationären Serie bezeichnet. Random-Walk - und Random-Trend-Modelle, autoregressive Modelle und exponentielle Glättungsmodelle sind alle Sonderfälle von ARIMA-Modellen. Ein Nicht-Seasonal-ARIMA-Modell wird als ein Quoten-Modell von quaremA (p, d, q) klassifiziert, wobei p die Anzahl der autoregressiven Terme ist, d die Anzahl der für die Stationarität benötigten Nichtseasondifferenzen und q die Anzahl der verzögerten Prognosefehler in Die Vorhersagegleichung. Die Prognosegleichung wird wie folgt aufgebaut. Zuerst bezeichne y die d-te Differenz von Y. Das bedeutet: Beachten Sie, dass die zweite Differenz von Y (der Fall d2) nicht der Unterschied von 2 Perioden ist. Vielmehr ist es der erste Unterschied zwischen dem ersten Unterschied. Welches das diskrete Analog einer zweiten Ableitung ist, d. h. die lokale Beschleunigung der Reihe und nicht deren lokaler Trend. In Bezug auf y. Die allgemeine Prognosegleichung lautet: Hier werden die gleitenden Durchschnittsparameter (9528217s) so definiert, dass ihre Zeichen in der Gleichung nach der von Box und Jenkins eingeführten Konventionen negativ sind. Einige Autoren und Software (einschließlich der R-Programmiersprache) definieren sie so, dass sie stattdessen Pluszeichen haben. Wenn tatsächliche Zahlen in die Gleichung gesteckt sind, gibt es keine Mehrdeutigkeit, aber it8217s wichtig zu wissen, welche Konvention Ihre Software verwendet, wenn Sie die Ausgabe lesen. Oft werden die Parameter dort mit AR (1), AR (2), 8230 und MA (1), MA (2), 8230 usw. bezeichnet. Um das entsprechende ARIMA-Modell für Y zu identifizieren, beginnen Sie mit der Bestimmung der Reihenfolge der Differenzierung (D) die Serie zu stationieren und die Brutto-Merkmale der Saisonalität zu entfernen, vielleicht in Verbindung mit einer abweichungsstabilisierenden Transformation wie Protokollierung oder Entleerung. Wenn Sie an dieser Stelle anhalten und vorhersagen, dass die differenzierte Serie konstant ist, haben Sie nur einen zufälligen Spaziergang oder ein zufälliges Trendmodell ausgestattet. Allerdings können die stationärisierten Serien immer noch autokorrelierte Fehler aufweisen, was darauf hindeutet, dass in der Prognosegleichung auch eine Anzahl von AR-Terme (p 8805 1) und einigen einigen MA-Terme (q 8805 1) benötigt werden. Der Prozess der Bestimmung der Werte von p, d und q, die am besten für eine gegebene Zeitreihe sind, wird in späteren Abschnitten der Noten (deren Links oben auf dieser Seite), aber eine Vorschau auf einige der Typen diskutiert werden Von nicht-seasonalen ARIMA-Modellen, die häufig angetroffen werden, ist unten angegeben. ARIMA (1,0,0) Autoregressives Modell erster Ordnung: Wenn die Serie stationär und autokorreliert ist, kann man sie vielleicht als Vielfaches ihres eigenen vorherigen Wertes und einer Konstante voraussagen. Die prognostizierte Gleichung in diesem Fall ist 8230which ist Y regressed auf sich selbst verzögerte um einen Zeitraum. Dies ist ein 8220ARIMA (1,0,0) constant8221 Modell. Wenn der Mittelwert von Y Null ist, dann wäre der konstante Term nicht enthalten. Wenn der Steigungskoeffizient 981 & sub1; positiv und kleiner als 1 in der Grße ist (er muß kleiner als 1 in der Grße sein, wenn Y stationär ist), beschreibt das Modell das Mittelwiederkehrungsverhalten, bei dem der nächste Periode8217s-Wert 981 mal als vorher vorausgesagt werden sollte Weit weg von dem Mittelwert als dieser Zeitraum8217s Wert. Wenn 981 & sub1; negativ ist, prognostiziert es ein Mittelrückkehrverhalten mit einem Wechsel von Zeichen, d. h. es sagt auch, daß Y unterhalb der mittleren nächsten Periode liegt, wenn es über dem Mittelwert dieser Periode liegt. In einem autoregressiven Modell zweiter Ordnung (ARIMA (2,0,0)) wäre auch ein Y-t-2-Term auf der rechten Seite und so weiter. Abhängig von den Zeichen und Größen der Koeffizienten könnte ein ARIMA (2,0,0) Modell ein System beschreiben, dessen mittlere Reversion in einer sinusförmig oszillierenden Weise stattfindet, wie die Bewegung einer Masse auf einer Feder, die zufälligen Schocks ausgesetzt ist . ARIMA (0,1,0) zufälliger Spaziergang: Wenn die Serie Y nicht stationär ist, ist das einfachste Modell für sie ein zufälliges Spaziergangmodell, das als Begrenzungsfall eines AR (1) - Modells betrachtet werden kann, in dem das autoregressive Koeffizient ist gleich 1, dh eine Serie mit unendlich langsamer mittlerer Reversion. Die Vorhersagegleichung für dieses Modell kann wie folgt geschrieben werden: wobei der konstante Term die mittlere Periodenänderung (dh die Langzeitdrift) in Y ist. Dieses Modell könnte als ein Nicht-Intercept-Regressionsmodell eingebaut werden, in dem die Die erste Differenz von Y ist die abhängige Variable. Da es (nur) eine nicht-seasonale Differenz und einen konstanten Term enthält, wird es als ein quotARIMA (0,1,0) Modell mit constant. quot eingestuft. Das random-walk-without - drift-Modell wäre ein ARIMA (0,1, 0) Modell ohne Konstante ARIMA (1,1,0) differenzierte Autoregressive Modell erster Ordnung: Wenn die Fehler eines zufälligen Walk-Modells autokorreliert werden, kann das Problem eventuell durch Hinzufügen einer Verzögerung der abhängigen Variablen zu der Vorhersagegleichung behoben werden - - ie Durch den Rücktritt der ersten Differenz von Y auf sich selbst um eine Periode verzögert. Dies würde die folgende Vorhersagegleichung ergeben: die umgewandelt werden kann Dies ist ein autoregressives Modell erster Ordnung mit einer Reihenfolge von Nicht-Seasonal-Differenzen und einem konstanten Term - d. h. Ein ARIMA (1,1,0) Modell. ARIMA (0,1,1) ohne konstante, einfache exponentielle Glättung: Eine weitere Strategie zur Korrektur autokorrelierter Fehler in einem zufälligen Walk-Modell wird durch das einfache exponentielle Glättungsmodell vorgeschlagen. Erinnern Sie sich, dass für einige nichtstationäre Zeitreihen (z. B. diejenigen, die geräuschvolle Schwankungen um ein langsam variierendes Mittel aufweisen), das zufällige Wandermodell nicht so gut wie ein gleitender Durchschnitt von vergangenen Werten ausführt. Mit anderen Worten, anstatt die jüngste Beobachtung als die Prognose der nächsten Beobachtung zu nehmen, ist es besser, einen Durchschnitt der letzten Beobachtungen zu verwenden, um das Rauschen herauszufiltern und das lokale Mittel genauer zu schätzen. Das einfache exponentielle Glättungsmodell verwendet einen exponentiell gewichteten gleitenden Durchschnitt von vergangenen Werten, um diesen Effekt zu erzielen. Die Vorhersagegleichung für das einfache exponentielle Glättungsmodell kann in einer Anzahl von mathematisch äquivalenten Formen geschrieben werden. Eine davon ist die so genannte 8220error Korrektur8221 Form, in der die vorherige Prognose in Richtung des Fehlers eingestellt wird, die es gemacht hat: Weil e t-1 Y t-1 - 374 t-1 per Definition, kann dies wie folgt umgeschrieben werden : Das ist eine ARIMA (0,1,1) - ohne Konstante Prognose Gleichung mit 952 1 1 - 945. Dies bedeutet, dass Sie eine einfache exponentielle Glättung passen können, indem Sie es als ARIMA (0,1,1) Modell ohne Konstant und der geschätzte MA (1) - Koeffizient entspricht 1-minus-alpha in der SES-Formel. Erinnern daran, dass im SES-Modell das Durchschnittsalter der Daten in den 1-Perioden-Prognosen 1 945 beträgt. Dies bedeutet, dass sie dazu neigen, hinter Trends oder Wendepunkten um etwa 1 945 Perioden zurückzukehren. Daraus folgt, dass das Durchschnittsalter der Daten in den 1-Periodenprognosen eines ARIMA (0,1,1) - without-constant-Modells 1 (1 - 952 1) beträgt. So, zum Beispiel, wenn 952 1 0.8, ist das Durchschnittsalter 5. Wenn 952 1 sich nähert, wird das ARIMA (0,1,1) - without-konstantes Modell zu einem sehr langfristigen gleitenden Durchschnitt und als 952 1 Nähert sich 0 wird es zu einem zufälligen Walk-ohne-Drift-Modell. Was ist der beste Weg, um Autokorrelation zu korrigieren: Hinzufügen von AR-Terme oder Hinzufügen von MA-Terme In den vorangegangenen zwei Modellen, die oben diskutiert wurden, wurde das Problem der autokorrelierten Fehler in einem zufälligen Walk-Modell auf zwei verschiedene Arten festgelegt: durch Hinzufügen eines verzögerten Wertes der differenzierten Serie Zur Gleichung oder Hinzufügen eines verzögerten Wertes des Prognosefehlers. Welcher Ansatz ist am besten Eine Faustregel für diese Situation, die später noch ausführlicher erörtert wird, ist, dass eine positive Autokorrelation in der Regel am besten durch Hinzufügen eines AR-Termes zum Modell behandelt wird und eine negative Autokorrelation wird meist am besten durch Hinzufügen eines MA Begriff. In geschäftlichen und ökonomischen Zeitreihen entsteht oftmals eine negative Autokorrelation als Artefakt der Differenzierung. (Im Allgemeinen verringert die Differenzierung die positive Autokorrelation und kann sogar einen Wechsel von positiver zu negativer Autokorrelation verursachen.) So wird das ARIMA (0,1,1) - Modell, in dem die Differenzierung von einem MA-Term begleitet wird, häufiger als ein ARIMA (1,1,0) Modell. ARIMA (0,1,1) mit konstanter, einfacher, exponentieller Glättung mit Wachstum: Durch die Implementierung des SES-Modells als ARIMA-Modell erhalten Sie gewisse Flexibilität. Zunächst darf der geschätzte MA (1) - Koeffizient negativ sein. Dies entspricht einem Glättungsfaktor größer als 1 in einem SES-Modell, was in der Regel nicht durch das SES-Modell-Anpassungsverfahren erlaubt ist. Zweitens haben Sie die Möglichkeit, einen konstanten Begriff im ARIMA-Modell einzubeziehen, wenn Sie es wünschen, um einen durchschnittlichen Trend ungleich Null abzuschätzen. Das ARIMA (0,1,1) - Modell mit Konstante hat die Vorhersagegleichung: Die Prognosen von einem Periodenvorhersage aus diesem Modell sind qualitativ ähnlich denen des SES-Modells, mit der Ausnahme, dass die Trajektorie der Langzeitprognosen typischerweise ein Schräge Linie (deren Steigung gleich mu ist) anstatt einer horizontalen Linie. ARIMA (0,2,1) oder (0,2,2) ohne konstante lineare exponentielle Glättung: Lineare exponentielle Glättungsmodelle sind ARIMA-Modelle, die zwei Nichtseason-Differenzen in Verbindung mit MA-Terme verwenden. Der zweite Unterschied einer Reihe Y ist nicht einfach der Unterschied zwischen Y und selbst, der um zwei Perioden verzögert ist, sondern vielmehr der erste Unterschied der ersten Differenz - i. e. Die Änderung der Änderung von Y in der Periode t. Somit ist die zweite Differenz von Y in der Periode t gleich (Y t - Y t - 1) - (Y t - 1 - Y t - 2) Y t - 2Y t - 1 Y t - 2. Eine zweite Differenz einer diskreten Funktion ist analog zu einer zweiten Ableitung einer stetigen Funktion: sie misst die quotaccelerationquot oder quotcurvaturequot in der Funktion zu einem gegebenen Zeitpunkt. Das ARIMA (0,2,2) - Modell ohne Konstante prognostiziert, dass die zweite Differenz der Serie gleich einer linearen Funktion der letzten beiden Prognosefehler ist: die umgeordnet werden kann: wobei 952 1 und 952 2 die MA (1) und MA (2) Koeffizienten Dies ist ein allgemeines lineares exponentielles Glättungsmodell. Im Wesentlichen das gleiche wie Holt8217s Modell, und Brown8217s Modell ist ein Sonderfall. Es verwendet exponentiell gewichtete Bewegungsdurchschnitte, um sowohl eine lokale Ebene als auch einen lokalen Trend in der Serie abzuschätzen. Die langfristigen Prognosen von diesem Modell konvergieren zu einer geraden Linie, deren Hang hängt von der durchschnittlichen Tendenz, die gegen Ende der Serie beobachtet wird. ARIMA (1,1,2) ohne konstante gedämpfte Trend-lineare exponentielle Glättung. Dieses Modell wird in den beiliegenden Folien auf ARIMA-Modellen dargestellt. Es extrapoliert den lokalen Trend am Ende der Serie, aber erhebt es bei längeren Prognosehorizonten, um eine Note des Konservatismus einzuführen, eine Praxis, die empirische Unterstützung hat. Sehen Sie den Artikel auf quotWhy der Damped Trend Workquot von Gardner und McKenzie und die quotGolden Rulequot Artikel von Armstrong et al. für Details. Es ist grundsätzlich ratsam, an Modellen zu bleiben, bei denen mindestens eines von p und q nicht größer als 1 ist, dh nicht versuchen, ein Modell wie ARIMA (2,1,2) zu passen, da dies wahrscheinlich zu Überfüllung führen wird Und quotcommon-factorquot-Themen, die ausführlicher in den Anmerkungen zur mathematischen Struktur von ARIMA-Modellen diskutiert werden. Spreadsheet-Implementierung: ARIMA-Modelle wie die oben beschriebenen sind einfach in einer Kalkulationstabelle zu implementieren. Die Vorhersagegleichung ist einfach eine lineare Gleichung, die sich auf vergangene Werte der ursprünglichen Zeitreihen und vergangene Werte der Fehler bezieht. So können Sie eine ARIMA-Prognosekalkulationstabelle einrichten, indem Sie die Daten in Spalte A, die Prognoseformel in Spalte B und die Fehler (Daten minus Prognosen) in Spalte C speichern. Die Prognoseformel in einer typischen Zelle in Spalte B wäre einfach Ein linearer Ausdruck, der sich auf Werte in vorhergehenden Zeilen der Spalten A und C bezieht, multipliziert mit den entsprechenden AR - oder MA-Koeffizienten, die in anderen Zellen auf der Spreadsheet gespeichert sind. Kaufman039s Adaptive Moving Average (KAMA) Kaufman039s Adaptive Moving Average (KAMA) Einleitung Entwickelt von Perry Kaufman , Kaufman039s Adaptive Moving Average (KAMA) ist ein gleitender Durchschnitt, der für Marktlärm oder Volatilität verantwortlich ist. KAMA wird die Preise genau verfolgen, wenn die Preisschwankungen relativ klein sind und der Lärm niedrig ist. KAMA wird sich anpassen, wenn sich die Preisschwankungen erweitern und die Preise aus größerer Entfernung verfolgen. Mit diesem Trend-Indikator können Sie den Gesamttrend, die Zeitdrehpunkte und die Filterpreisbewegungen identifizieren. Berechnung Es sind mehrere Schritte erforderlich, um Kaufman039s Adaptive Moving Average zu berechnen. Let039s beginnen zunächst mit den von Perry Kaufman empfohlenen Einstellungen, die KAMA (10,2,30) sind. 10 ist die Anzahl der Perioden für das Efficiency Ratio (ER). 2 ist die Anzahl der Perioden für die schnellste EMA-Konstante. 30 ist die Anzahl der Perioden für die langsamste EMA-Konstante. Vor der Berechnung von KAMA müssen wir das Efficiency Ratio (ER) und die Smoothing Constant (SC) berechnen. Das Brechen der Formel in Bissgröße Nuggets macht es einfacher, die Methodik hinter dem Indikator zu verstehen. Beachten Sie, dass ABS für Absolutwert steht. Efficiency Ratio (ER) Die ER ist grundsätzlich die Preisänderung für die tägliche Volatilität angepasst. In statistischer Hinsicht sagt das Effizienzverhältnis die fraktale Effizienz der Preisänderungen. ER schwankt zwischen 1 und 0, aber diese Extreme sind die Ausnahme, nicht die Norm. ER wäre 1, wenn die Preise um 10 aufeinanderfolgende Perioden oder um 10 aufeinanderfolgende Perioden verschoben wurden. ER wäre null, wenn der Preis über die 10 Perioden unverändert bleibt. Glättungskonstante (SC) Die Glättungskonstante verwendet die ER - und zwei Glättungskonstanten auf der Grundlage eines exponentiellen gleitenden Durchschnitts. Wie Sie vielleicht bemerkt haben, verwendet die Glättungskonstante die Glättungskonstanten für einen exponentiellen gleitenden Durchschnitt in ihrer Formel. (2301) ist die Glättungskonstante für eine 30-Perioden-EMA. Der schnellste SC ist die Glättungskonstante für kürzere EMA (2-Perioden). Der langsamste SC ist die Glättungskonstante für die langsamste EMA (30-Perioden). Beachten Sie, dass die 2 am Ende ist, um die Gleichung zu quadrieren. Mit dem Efficiency Ratio (ER) und Smoothing Constant (SC) sind wir nun bereit, Kaufman039s Adaptive Moving Average (KAMA) zu berechnen. Da wir einen Anfangswert benötigen, um die Berechnung zu starten, ist die erste KAMA nur ein einfacher gleitender Durchschnitt. Die folgenden Berechnungen basieren auf der folgenden Formel. BerechnungsbeispielChart Die folgenden Bilder zeigen einen Screenshot aus einer Excel-Tabelle, die zur Berechnung von KAMA und dem entsprechenden QQQ-Diagramm verwendet wird. Verwendung und Signale Chartisten können KAMA wie jeden anderen Trend folgen Indikator, wie ein gleitender Durchschnitt. Chartisten können nach Preiskreuzungen, Richtungsänderungen und gefilterten Signalen suchen. Zuerst zeigt ein Kreuz über oder unter KAMA Richtungsänderungen in den Preisen an. Wie bei jedem gleitenden Durchschnitt, wird ein einfaches Crossover-System viele Signale und viele Whipsaws erzeugen. Chartisten können Whipsaws reduzieren, indem sie einen Preis - oder Zeitfilter auf die Crossover anwenden. Man könnte den Preis verlangen, um das Kreuz für die festgelegte Anzahl von Tagen zu halten oder das Kreuz zu verlängern, das KAMA um einen festgelegten Prozentsatz übersteigt. Zweitens können Chartisten die Richtung von KAMA nutzen, um den Gesamttrend für eine Sicherheit zu definieren. Dies kann eine Parametrierung erfordern, um den Indikator weiter zu glätten. Chartisten können den mittleren Parameter ändern, der die schnellste EMA-Konstante ist, um KAMA zu glätten und nach Richtungsänderungen zu suchen. Der Trend geht ab, solange KAMA fällt und untere Tiefen schmiedet. Der Trend ist so lange, wie KAMA steigt und höhere Höhen schafft. Das Kroger-Beispiel unten zeigt KAMA (10,5,30) mit einem steilen Aufwärtstrend von Dezember bis März und einem weniger steilen Aufwärtstrend von Mai bis August. Und schließlich können Chartisten Signale und Techniken kombinieren. Chartisten können eine längerfristige KAMA verwenden, um den größeren Trend und eine kürzere KAMA für Handelssignale zu definieren. Beispielsweise könnte KAMA (10,5,30) als Trendfilter verwendet werden und beim Aufsteigen als bullisch angesehen werden. Einmal bullisch, konnten die Chartisten dann nach bullischen Kreuzen Ausschau halten, wenn der Preis über KAMA (10,2,30) geht. Das Beispiel unten zeigt MMM mit einem steigenden langfristigen KAMA und bullish Kreuze im Dezember, Januar und Februar. Langfristige KAMA wandte sich im April ab und es waren bärische Kreuze im Mai, Juni und Juli. SharpCharts KAMA kann als Indikator-Overlay in der SharpCharts Workbench gefunden werden. Die Standardeinstellungen werden automatisch im Parameterfeld angezeigt, sobald sie ausgewählt sind und Chartisten diese Parameter an ihre analytischen Bedürfnisse anpassen können. Der erste Parameter ist für das Efficiency Ratio und Chartisten sollten von der Erhöhung dieser Zahl absehen. Stattdessen können Chartisten es verringern, um die Empfindlichkeit zu erhöhen. Chartisten, die KAMA für eine längerfristige Trendanalyse glätten möchten, können den mittleren Parameter schrittweise erhöhen. Obwohl der Unterschied nur 3 ist, ist KAMA (10,5,30) deutlich glatter als KAMA (10,2,30). Weitere Studie Aus dem Schöpfer bietet das untenstehende Buch detaillierte Informationen zu Indikatoren, Programmen, Algorithmen und Systemen, einschließlich Details zu KAMA und anderen gleitenden Durchschnittssystemen. Trading Systems und Methoden Perry KaufmanCreating a Rolling Calculation Produkt (e): Tableau Desktop Version (en): 8.3, 8.2, 8.1, 8.0 Letzte Änderung: 16 Aug 2016 Artikel Hinweis: Dieser Artikel wird nicht mehr aktiv von Tableau gepflegt. Wir machen es weiterhin verfügbar, da die Informationen immer noch wertvoll sind, aber einige Schritte können aufgrund von Produktänderungen variieren. Rollberechnungen, speziell gezielte Mittelwerte, sind oft nützlich, um einmalige Ausreißer zu ziehen und kurzfristige Schwankungen zu glätten. Durchgehende Durchschnitte werden oft auf Zeitreihendaten durchgeführt. Im Einzelhandel ist diese Berechnung für die Abflachung von saisonalen Umsatztrends nützlich, um langfristige Trends besser zu sehen. Dieses Beispiel führt Sie durch die Erstellung von Arbeitsblättern, um wöchentliche Verkäufe und wöchentliche Verkaufsdurchschnitte zu zeigen, sie nebeneinander in einem Armaturenbrett zu vergleichen und sie in einer Überlagerung zu vergleichen. Richten Sie ein Arbeitsblatt ein, um ein Wochenende zu sehen. Öffnen Sie eine neue Arbeitsmappe und stellen Sie eine Verbindung zum Superstore-Beispiel her. Ziehen Sie im Bereich "Abmessungen" die Option "Auftragsdatum" in das Spaltenregal und ziehen Sie eine zweite Instanz in das Filterregister. Wählen Sie im Dialogfeld Filterfeld die Option Jahre aus, und klicken Sie dann auf Weiter. Deaktivieren Sie im Dialogfeld Filter die Kontrollkästchen für alle Jahre außer 2012, und klicken Sie dann auf OK. Klicken Sie im Spaltenregal auf das Dropdown-Menü Jahr (Auftragsdatum) auf Mehr gt Benutzerdefiniert. Wählen Sie im Dialogfeld Benutzerdefiniertes Datum in der Detailliste die Option Wochennummern aus. Dann wählen Sie Datum Part. Und klicken Sie dann auf OK. Ziehen Sie aus dem Bereich "Measures" den Verkauf in das Regal. Klicken Sie auf dem Regal mit der rechten Maustaste auf Sales. Und wählen Sie dann Tabelle hinzufügen. Füllen Sie im Dialogfeld Tabellenberechnung die folgenden Schritte aus: Wählen Sie in der Liste Berechnungsart die Option Berechnungsberechnung aus. Wählen Sie in den Zusammenfassungswerten die Liste aus. Um den durchschnittlichen Umsatz in den letzten drei Wochen zu verzeichnen, lassen Sie die vorherigen Werte auf 2 setzen. Lassen Sie die nächsten Werte auf 0 setzen. Und halten Sie das Kontrollkästchen Aktueller Wert einschließen aktiviert. OK klicken . Klicken Sie mit der rechten Maustaste auf die Registerkarte Arbeitsblatt. Und nennen sie 2012 wöchentliche Verkaufswoche. Erstellen Sie ein Arbeitsblatt, um Daten anstelle von Wochennummern anzuzeigen. Sie können ein berechnetes Feld verwenden, um alle Daten in einem bestimmten Zeitraum zu gruppieren. Für Tableau Desktop 7.0 und 8.0 klicken Sie mit der rechten Maustaste auf die Registerkarte Arbeitsblatt und wählen Sie Duplizieren von Blatt aus. Wählen Sie für Tableau Desktop 6.1 und früher die Option Gt Duplicate Sheet bearbeiten aus. Wählen Sie auf dem neuen Arbeitsblatt Analysis gt Create Calculated Field aus. Füllen Sie im Dialogfeld Berechnete Felder die folgenden Schritte aus. DATETRUNC (39week39, Order Date) Bestätigen Sie, dass die Statusmeldung anzeigt, dass die Formel gültig ist, und klicken Sie dann auf OK. Aus dem Bereich Dimensionen ziehen Sie Weektrunc in das Säulenregal. Tableau Desktop 7.0 und 8.0: Klicken Sie im Spaltenregal mit der rechten Maustaste auf YEAR (Weektrunc). Und Exaktes Datum auswählen. Tableau Desktop 6.1 und früher: Klicken Sie im Spaltenregal mit der rechten Maustaste auf JAHR (Weektrunc) und wählen Sie Alle Werte aus. Klicken Sie im Spaltenregal mit der rechten Maustaste auf WEEK (Bestelldatum) und wählen Sie Entfernen. Klicken Sie mit der rechten Maustaste auf die Registerkarte Arbeitsblatt. Und benennen Sie das Arbeitsblatt 2012 Weekly Sales. Vergleiche regelmäßige Verkäufe mit dem gleitenden Durchschnitt Um die regulären Verkäufe mit dem gleitenden Durchschnitt zu vergleichen, erstellen Sie ein Blatt für jeden. Erstellen und umbenennen eines neuen Arbeitsblattes. Tableau Desktop 7.0 und 8.0: Klicken Sie mit der rechten Maustaste auf die Registerkarte 2012 Weekly Sales-Arbeitsblatt und wählen Sie dann Duplicate Sheet aus. Tableau Desktop 6.1 und früher: Wählen Sie das 2012 Weekly Sales-Arbeitsblatt aus, und wählen Sie dann Gt Duplicate Sheet bearbeiten aus. Klicken Sie mit der rechten Maustaste auf die Registerkarte Arbeitsblatt. Und nennen Sie das neue Blatt 2012 Weekly Sales Moving Avg. Zeigen Sie das 2012 Weekly Sales-Arbeitsblatt an, und klicken Sie auf dem Rows-Regal mit der rechten Maustaste auf SUM (Sales) und wählen Sie Clear Table Calculation. Jetzt setzen Sie die y-Achse auf die beiden Arbeitsblätter auf den gleichen Bereich. Klicken Sie mit der rechten Maustaste auf die y-Achse und wählen Sie dann Achse bearbeiten. Fügen Sie im Dialogfeld "Achse bearbeiten" folgende Änderungen vor: Zeigen Sie das Arbeitsblatt für die wöchentlichen Verkaufsbewegungen von 2012 an und nehmen Sie die gleichen Änderungen für die y-Achse vor. Erstellen eines Dashboards Führen Sie diese Schritte aus, um ein Dashboard zu erstellen, das beide Arbeitsblätter nebeneinander zeigt. Wählen Sie für Tableau Desktop 7.0 und 8.0 das Dashboard gt New Dashboard aus. Wählen Sie für Tableau Desktop 6.1 und früher die Option Gt New Dashboard bearbeiten aus. Ziehen Sie 2012 wöchentliche Verkäufe zum Armaturenbrett. Ziehen Sie 2012 Weekly Sales Moving Avg auf das Armaturenbrett und positionieren Sie es auf der linken Seite von 2012 Weekly Sales. Erstellen Sie ein Overlay Ein Overlay ist eine andere Möglichkeit, den Umsatz und den gleitenden Durchschnitt zu vergleichen. Tableau Desktop 7.0 und 8.0: Klicken Sie mit der rechten Maustaste auf die Registerkarte 2012 Weekly Sales Moving Avg-Arbeitsblatt und wählen Sie Duplicate Sheet aus. Tableau Desktop 6.1 und früher: Wählen Sie das 2012 Weekly Sales Moving Avg Arbeitsblatt und wählen Sie Bearbeiten gt Duplicate Sheet. Auf dem neuen Blatt, aus dem Measures-Bereich, ziehen Sie Messwerte in das Zeilenregal. Ziehen Sie im Bereich "Dimensionen" die Namen in das Filterregal. Verkleinern Sie im Dialogfeld "Filter" alle Kontrollkästchen außer Sales. Und klicken Sie dann auf OK. Ziehen Sie im Bereich "Dimensionen" die Namen der Farbe auf die Marks-Karte. Ziehen Sie eine andere Instanz von Measure Names aus dem Dimensionsbereich in Größe. Farbe und Größe machen die Linien leichter visuell zu unterscheiden. Tipp: In Tableau 8.0, um die Markierungsgröße anzupassen, können Sie auch auf die Marks-Karte klicken, die einen bestimmten Satz von Markierungen (anstelle von All) darstellt und den Größen-Schieberegler anpassen. Dann mach das gleiche für den anderen Satz, wenn du sie noch weiter differenzieren willst. Von der Regalreihe ziehen Sie die SUM (Verkäufe) in das Regal der Measure Values. Alternative Suchbegriffe: Tableau Digitale Berechnungen Filter Vielen Dank für die Rückmeldung über die Wirksamkeit des Artikels.

No comments:

Post a Comment